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Abstract. A time-dependent approach for the calculation of eigenenergies, eigenfunctions and
optical spectra, within the effective-mass and single-hole-band approximations, of low-dimensional
semiconductor systems is presented. In this method, energy and optical spectra are obtained
by Fourier analysis of a time-autocorrelation function constructed from an appropriately chosen
propagated wavepacket. Eigenfunctions are determined by a direct Fourier analysis of such
a propagated wavepacket. The time evolution of the wavefunction is obtained by numerical
integration of the time-dependent Schrödinger equation. This approach shares the virtues of the
more common numerical methods (accuracy, flexibility and automatic enforcement of boundary
conditions) with the additional advantage that it can yield an entire eigen or optical spectrum in
a single calculation. The methodology is applied to the calculation of all the eigenenergies and
eigenfunctions of the conduction band, and the intensities of the transitions from the ground state
of the valence band to all the states of the conduction band, in spherical GaAs-(Ga,Al)As quantum
dots with finite confinement and a wide range of radii, without and with an on-centre shallow donor
impurity.

1. Introduction

With the development of experimental techniques such as chemical vapour deposition, liquid-
phase epitaxy and molecular-beam epitaxy, it has been possible in the last two decades, to
fabricate a variety of low-dimensional semiconductor systems with sizes comparable to the
electronic de Broglie wavelength [1]. Such systems include quantum dots (QD’s), quantum-
well wires (QWW’s) and single and multiple quantum wells (QW’s), in which carriers are
free to move in zero, one and two dimensions, respectively. Due to carrier confinement, these
structures exhibit electronic, optical and transport properties that are quite different from those
of the semiconductor constituents. In the past few years, a large number of experimental [2] and
theoretical [3–7] studies of the electronic structure, impurity and excitonic states, intraband and
interband optical spectra, and transport phenomena in such low-dimensional semiconductor
systems have been reported.

The dependence of these properties on the size of the system, the position of the impurity
in the structure and the strength and direction of applied electric and magnetic fields is
of special interest. Extensive theoretical investigations of such dependences require large
amounts of calculations, which can become very time-consuming and tedious. Therefore, it is

§ Corresponding author.

0953-8984/00/489917+16$30.00 © 2000 IOP Publishing Ltd 9917



9918 D F Montaño et al

desirable to implement computational methodologies that are, besides accurate, also flexible,
efficient and accessible to the experimentalist as well as to the theoretician. A variety of
computational approaches have been used, such as approximate perturbative, variational
and basis-set methods [4] on the one hand and exact numerical techniques in real [5, 6] or
momentum [7] space on the other hand. In variational or basis-set approaches, the quality of
the solutions depends strongly on the chosen trial function or basis set, which may work well
for a certain regime of length and/or energy scales, but may fail for another regime, precluding
a treatment of the different regimes on a common footing. In addition, in variational methods
only one solution is obtained at a time, whereas in basis-set techniques only a few (usually the
lowest) eigensolutions have physical significance, sometimes their very identification being
difficult. Numerical approaches for the direct integration of the time-independent Schrödinger
equation (TISE) [5–7] yield exact solutions, in the sense that no intrinsic approximations are
entailed and the error is purely numerical and controlled. They are also very flexible, since
they can deal with potentials of arbitrary shape, and are easily accessible [8]. However, they
still yield only one solution at a time.

An interesting alternative to time-independent numerical methods is offered by wavepacket
propagation methods [9–12], which rely on the direct numerical integration of the time-
dependent Schrödinger equation (TDSE). It may seem awkward to employ an approach that
involves solving the TDSE for finding solutions of the TISE, but this can be advantageous.
In particular, in time-dependent methods the boundary conditions are enforced automatically,
since the TDSE is an initial-value problem, in contrast to time-independent methods where the
boundary conditions must be adjusted during the calculation, since the TISE is a boundary-
value problem [6]. Kuhn et al [9] have employed a relaxation approach for the calculation of
eigenenergies and eigenfunctions within the effective-mass approximation (EMA) [3]. In this
method, a wavepacket is propagated numerically in imaginary time until it converges, within a
normalization constant, to the ground state. For obtaining an excited state this procedure must
be repeated employing an initial wavepacket orthogonal to the already calculated lower states.

Recently, methods based on the propagation of wavepackets in real time have become
popular in atomic and molecular physics [10–12]. In these methods, the computation of
eigenenergies involves the construction of a so-called time-autocorrelation function from
an appropriate nonstationary solution of the TDSE, whose Fourier transform displays the
energies of all the stationary states comprised in such a nonstationary wave function [10].
Eigenfunctions are computed from a direct Fourier transform of the time-dependent wave
function at the corresponding eigenenergies [10, 11]. A related procedure for calculating
densities of states in solids, based on the Fourier analysis of the retarded Green function has
also been presented [13]. Photoabsorption and Raman scattering spectra can also be computed
directly by Fourier analysis of so-called dipole correlation functions [11, 12], analogously to the
manner it is done in condensed-phase spectroscopy [14]. These approaches share the virtues
(accuracy, flexibility and automatic enforcement of boundary conditions) of the previously
mentioned numerical methods, with the additional advantage that they can yield an entire
eigen or optical spectrum in a single calculation. This last feature makes this approach very
suitable for investigations that require the determination of many eigen and/or optical spectra.

The first objective of this work is to show how a numerical real-time wavepacket
propagation method (RTWPM) can be adapted and implemented for the calculation, within
the EMA and the single-hole-band approximation, of the quantum states and optical spectra
of low-dimensional semiconductors. The second objective is to apply the RTWPM to an
extensive and systematic study of all the bound quantum states of the conduction band and
of the optical spectra associated with transitions from the ground state of the valence band
to all the bound states of the condition band, in spherical GaAs-(Ga,Al)As QD’s with finite
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confinement and a wide range of radii, without and with an on-centre shallow donor impurity.
The impurity-free finite spherical well is a standard textbook example, having analytical
solutions in the form of a transcendental equation involving spherical Bessel functions. (In
practice, however, such a transcendental equation is commonly solved iteratively [15].) The
impurity-doped finite spherical well, on the other hand, has been treated by means of a
variational approach [15]. These systems have been chosen for the following reasons. First,
to date there are no experimental reports on the optical spectra associated with interband
transitions in them, although their understanding might become relevant in solid-state physics
and technology, particularly in the field of optoelectronics. Second, a theoretical study of these
spectra, including all the allowed transitions, has not been provided either.

In section 2, the model employed for the spherical QD is set up. Section 3 presents the
general formalism of the RTWPM for the calculation of energy eigenvalues, eigenfunctions
and intensities of optical transitions, together with its adaptation for the model of section 2. In
section 4, the computational strategies chosen for the efficient implementation of the RTWPM
are summarized. In section 5, the results of the calculations are displayed and discussed.
Section 6 closes with the concluding remarks.

2. Model

In this work, the EMA [3, 15] and the single-hole-band approximation [3, 15] (in which the
hole effective mass is taken as an appropriate average of the light-hole and heavy-hole effective
masses) are taken as a starting point. Additionally, for the sake of simplicity, the electron–hole
interaction is not taken into account, i.e. excitonic effects [3] are not considered, the dielectric
constant and effective masses are considered equal for the GaAs and (Ga,Al)As materials [15],
the dielectric constant is taken as position-independent [15] and the effective masses are taken
as isotropic [3, 15].

Accordingly, the (radial) confinement potentials for the electron and hole in a spherical
QD of radius R, V

(e,h)

conf (r), are modelled as step functions of height V
(e,h)

0 at R, and the electron–
impurity interaction, Vimp(r), is taken as pure Coulombic. The wave function for the electron
(hole) is written as [3]

�
(e,h)
k0,s (�r) = U

(e,h)
k0,s (�r)ξ (e,h)(�r) (1)

where U
(e,h)
k0,s (�r) is the periodic Bloch function evaluated as the sth band extreme, k0, and

ξ (e,h)(�r) is the envelope eigenfunction, which can be separated in the standard form [16]

ξ
(e,h)
n,l,m(r, θ, φ) = 1

r
ψ

(e,h)
n,l (r)Yl,m(θ, φ) (2)

with Yl,m(θ, φ) a spherical harmonic and ψ
(e,h)
n,l (r) a radial eigenfunction. With this form, the

latter satisfies the boundary condition ψ
(e,h)
n,l (r = 0) = 0 and is an eigensolution of the l-wave

radial TISE

Ĥ
(e,h)
l ψ

(e,h)
n,l (r) = E

(e,h)
n,l ψ

(e,h)
n,l (r) (3)

with the radial Hamiltonian

Ĥ
(e,h)
l = − h̄2

2m∗
e,h

∂2

∂r2
+ V

(e,h)
l (r). (4a)

Here,

V
(e,h)
l (r) = h̄2l(l + 1)

2m∗
e,hr2

+ V (e,h)(r) (4b)
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is the familiar effective radial potential for the electron (hole) of effective mass m∗
e,h, with

V (e)(r) = V
(e)

conf + Vimp for the electron and V (h)(r) = V
(h)

conf for the hole.
Within the EMA, the intensity of an optical transition from an initial state �k0,s(�r) to a

final state �k0,s ′(�r) is given by [17]

I ∝ |〈�k0,s(�r)|�ε · �̂p|�k0,s ′(�r)〉|2 (5)

where �ε is the polarization vector of the applied electromagnetic field and �̂p is the momentum
operator. For an interband transition this intensity can be further approximated as [17]

I ∝ | �Ks,s ′ · 〈ξn,l,m(r, θ, φ)|�ε|ξn′,l′,m′(r, θ, φ)〉|2

= | �Ks,s ′ · 〈Yl,m(θ, φ)|�ε|Yl′,m′(θ, φ)〉|2
∣∣∣∣
〈
ψn,l(r)

∣∣∣∣ 1

r2

∣∣∣∣ψn′,l′(r)

〉∣∣∣∣
2

(6)

where �Ks,s ′ ≡ 〈Uk0,s(�r)| �̂p|Uk0,s ′(�r)〉, and equation (2) has been used. The first factor of
equation (6) gives rise to the well known E1 selection rules [16, 17]

�l = l′ − l = ±1 (7a)

�m = m′ − m = 0, ±1 (7b)

whereas the second factor determines the relative transition intensities.

3. Formalism of the RTWPM

For the determination of the eigenenergies and eigenfunctions of a Hamiltonian, the first step
consists of the specification of a test function, whose spatial form corresponds to a wavepacket.
This function must satisfy the boundary conditions of the problem, otherwise being arbitrary
at this point. The test function can be written formally as a spectral expansion in terms of the
eigenstates of the Hamiltonian,

�(�r) =
∑

j

cj ψj (�r) (8)

where j denotes the complete set of relevant quantum numbers. Here and below, for the sake
of notational simplicity, the summation symbol is understood to include the integration over
the continuous part of the spectrum. The second step entails the propagation in time of the
test function, assuming, merely for convenience, the initial time as t = 0. The formal spectral
expansion now takes the form

�(�r, t) =
∑

j

cj ψj (�r) exp(−ιEj t/h̄). (9)

Since, in practice, it is impossible to generate the wave function for −∞ < t < ∞, from now
on a record of time −T � t � +T will be assumed.

For the determination of eigenenergies, the next step consists in constructing a time-
autocorrelation function, which is defined as the spatial overlap of the test function at t = 0
with itself at t :

A(t) := 〈�|�(t)〉 (10)

=
∑

j

|cj |2 exp(−ιEj t/h̄) (11)

where, to obtain the last equation, equation (9) has been employed. The formal spectral
representation (11) shows that A(t) contains information about the spectral weights, |cj |2, and
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energies, Ej , of the stationary states comprised in the test function. Finally, a spectral function
is evaluated, which is defined as the truncated inverse Fourier transform of A(t):

&T (E) := 1

2πh̄

∫ T

−T

A(t) exp(ιEt/h̄) dt (12)

=
∑

j

|cj |2δT (E − Ej ) (13)

where, to obtain the last equation, equation (11) has been employed and a normalized lineshape
function

δT (E) := 1

2πh̄

∫ T

−T

exp(ιEt/h̄) (14)

= sin(ET /h̄)

πE
(15)

has been introduced. In the limit of T → ∞ this is the familiar Fourier representation
of the Dirac delta function, limT →∞ δT (E) = δ(E). For finite T , this oscillatory function
presents a global maximum at E = 0 of height T /πh̄ and nodes at E = ±kπh̄/T , with
k = 1, 2, . . . . Thus, for sufficiently long T , the function looks like a peak of breadth
�E ∼ 2πh̄/T . Consequently, for long enough T , in the discrete part of the spectrum the
spectral function consists of a series of peaks centred at the eigenenergies of the Hamiltonian.
A peak located at Ej will be well resolved (i.e. approximately orthogonal to the other peaks)
if �E � |Ej+1 − Ej−1|, that is, if T � 2πh̄|Ej+1 − Ej−1|−1, its height, &T (Ej ), giving the
corresponding spectral weight by

|cj |2 ≈ πh̄

T
&T (Ej ) (16)

where δT (0) = T /πh̄ has been used. Therefore, in accordance with the time-energy
uncertainty principle, the longer the propagation time the greater the resolution of the obtained
discrete eigenstates.

The eigenfunctions can be obtained by means of the spectral surface, which is defined
as the truncated inverse Fourier transform to the energy domain of the time-propagated test
function:

)T (�r, E) := 1

2πh̄

∫ T

−T

�(�r, t) exp(ιEt/h̄) dt (17)

=
∑

j

cj ψj (�r)δT (E − Ej ) (18)

where, to obtain the last equation, equations (9) and (14) have been employed. It is observed
that, for sufficiently long T , a ‘slice’ of the spectral surface at the discrete eigenvalue E = Ej ,
produces the corresponding normalized eigenfunction by

ψj (�r) ≈ πh̄

T cj

)T (�r, Ej ). (19)

Once the eigenfunctions are obtained, transition intensities can be determined in the usual
manner, by computing the matrix elements of the relevant interaction operator between the
initial and the final states. However, the RTWPM provides a strategy for obtaining an entire
optical spectrum in a single calculation from the eigenfunction of the initial state only. The
formalism differs from the one for determining eigenenergies solely by the test function
employed. In the special case of an interband spectrum, an optical (E1) test function is
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prescribed by

�(E1)(�r) ≡ ψ0(�r) (20)

=
∑

j

〈ψj |ψ0〉ψj (�r) (21)

where ψ0(�r) is the (known) eigenfunction of the initial state and closure has been introduced
in order to obtain the last equation. It is seen that the coefficients appearing in this spectral
expansion are precisely the matrix elements governing the intensity of the optical interband
transition, as indicated by equation (6). Next, the E1 test function is propagated in time, and
an E1 time-autocorrelation function is constructed as

A(E1)(t) := 〈�(E1)|�(E1)(t)〉 (22)

=
∑

j

|〈ψj |ψ0〉|2 exp(−ιEj t/h̄). (23)

Finally, an E1 spectral function is obtained by

&
(E1)
T (E) := 1

2πh̄

∫ T

−T

A(E1)(t) exp(ιEt/h̄) dt (24)

=
∑

j

|〈ψj |ψ0〉|2δT (E − Ej ). (25)

It is observed that, for T � 2πh̄|EJ +1 − Ej−1|−1, in the discrete part of the spectrum this
function presents resolved peaks centred at the eigenenergies, whose heights, &

(E1)
T (Ej ), are

proportional to the transition intensities of the corresponding transitions:

|〈ψj |ψ0〉|2 ≈ πh̄

T
&

(E1)
T (Ej ). (26)

The formalism just presented is entirely general in the sense that the nature of the
Hamiltonian has remained unspecified. Its adaptation to the problem posed in section 2 is
easily achieved in the following fashion. For the determination of l-wave eigenenergies and
eigenfunctions, an l-wave radial test function is chosen according to the criteria explained in
section 5. Analogously to equation (8), this function can be formally expressed as

�
(e,h)
l (r) =

∑
n

c
(e,h)
n,l ψ

(e,h)
n,l (r). (27)

This test function is then propagated in time with the corresponding l-wave radial
Hamiltonian (4). The remaining steps are analogous to the ones leading to equations (13)
and (18).

For the calculation of an n, l → n′, l′ = l ± 1 interband optical spectrum, in conformity
with the selection rule (7a), an l-wave radial E1 test function is prescribed, analogously to
equation (20), as

�
(E1)
l (r) ≡ ψ

(h)
n,l (r).

=
∑

n′

〈
ψ

(e)
n′,l′

∣∣∣∣ 1

r2

∣∣∣∣ψ(h)
n,l

〉
ψ

(e)
n′,l′(r). (28)

This test function is then propagated in time with the radial Hamiltonian V
(e)
l (r) for l′ = l ±1.

The remaining steps are analogous to the ones leading to equation (26).
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4. Computational considerations

Accurate solutions of the TDSE

ih̄
∂

∂t
�

(e,h)
l (t) = Ĥ

(e,h)
l �

(e,h)
l (t) (29)

are essential for the successful implementation of the RTWPM. In this work, a simple, but
sufficiently accurate, finite-differences technique [8, 18, 19] was employed for the generation
of exact numerical solutions on a grid of this equation. The spatial second derivative
in the Hamiltonian operator (4a) was evaluated by means of a fourth-order five-point
formula [18] and the time derivative was evaluated by means of the second-order improved
Euler method [8, 18, 19]. Such an integration scheme turns out to be conditionally stable [19].
Fourier transforms were evaluated employing available FFT routines [8].

Due to the boundary condition ψ
(e,h)
n,l (r = 0) = 0, the wavepacket must satisfy the

condition �
(e,h)
l (r = 0, t) = 0 at all times, according to equation (27), which can be easily

enforced on a grid. On the other hand, since the grid is finite, the artificial condition
�l(rmax, t) = 0 must be imposed, where rmax is the grid boundary. (Another alternative is to
impose artificial periodic boundary conditions at rmax.) In order to avoid spurious confinement
effects, rmax must be chosen large enough so that the calculated bound eigenfunctions decay
to zero well before reaching the grid boundary.

Most of the computational effort in the implementation of the RTWPM is spent in the
numerical integration of the TDSE. Computation time can be saved, without sacrificing
resolution, in the following fashion. From equation (11) it is seen that A(−t) = A∗(t).
This implies that &T (E), equation (12), can be obtained from a time-autocorrelation function
constructed for 0 � t � T only, reducing the computation time by half. (In the definition (12)
the integral could have been performed for 0 � t � T . It can be easily verified that a spectral
function defined in this way turns out to be complex, its real and imaginary parts displaying the
same information as (13), but with half the resolution. Therefore, it is more convenient to work
with the definition (12).) Likewise, according to equation (9), �(r, −t) = �∗(r, t), provided
the cj are real. This implies that, as long as the test function is chosen as real, )T (r, E) can
also be obtained from a wave function computed for 0 � t � T only.

For a given propagation time, resolution can be further improved by means of standard
windowing techniques [8, 20]. This relies on the observation that the Fourier-transform integral
of equation (12) can be written with the limits −∞ � t � ∞ when the integrand is multiplied
by the rectangular window function supported on −T � t � T [20]. According to the
convolution product theorem [20], the finite-resolution spectral function of equation (12) can
be regarded as the convolution product of the infinite-resolution spectral function and the
lineshape function (15), &T (E) = &(E) ∗ δT (E). From the computational standpoint, it is
more convenient to convolute &(E) with a function whose sidelobes decay faster with energy
than those of the lineshape function (15). To this end, the window function

WT = 1

2

(
1 − cos

π(t − T )

T

)
− T � t � T

= 0, t > |T | (30)

was used instead of PT (t). The modified normalized lineshape function turns out to be

�T (E) = 1

2

1

1 − (ET /πh̄)2

sin(ET /h̄)

πE
(31)

= LT (E)δT (E) (32)
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Figure 1. l = 0 conduction band radial potential, eigenenergies and eigenfunctions for an
R = 300 Å GaAs-(Ga,Al)As QD with finite confinement. (a) Without impurity, including the
calculated spectral function. (b) With an on-centre shallow donor impurity.

where the definition of the rectangular one is evident and it is seen that its net effect is to strongly
damp the sidelobes of δT (E). The same procedure has been employed in the evaluation of the
Fourier transforms (17) and (24).

5. Results and discussion

Calculations were performed for GaAs/Ga1−xAlxAs spherical QD’s with a fixed Al
concentration of x = 0.45. The confinement potential was calculated by means of the empirical
formula [15]

V
(e,h)

0 = xA(e,h)(1.247) eV (33)

with A(e) = 0.6 and A(h) = 0.4, yielding V
(e)

0 = 336.69 meV and V
(h)

0 = 224.56 meV. The
band gap of pure GaAs is Egap = 1519 meV [15]. The spherical effective masses and dielectric
constant of GaAs used were m∗

e = 0.0665me, m∗
h = 0.30242me and εd = 12.35 ε0 [21].
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Figure 2. l = 1 conduction band radial potential, eigenenergies and eigenfunctions for an
R = 300 Å GaAs-(Ga,Al)As QD with finite confinement. (a) Without impurity. (b) With an
on-centre shallow donor impurity.

Total propagation times ranged from T = 2.5 × 10−12 seconds to T = 3.75 × 10−12

seconds, depending on the level of resolution needed, giving peak breadths of �E ∼ 1.7 meV
and �E ∼ 1.1 meV, respectively.

Evidently, only the states implicitly comprised in the test function (27) will be displayed
in the spectral function and surface of equations (13) and (18), respectively. Therefore, it
is desirable to employ a test function that contains as many states as possible. The one
function that contains the entire eigenspectrum of the Hamiltonian is the Dirac delta function.
However, this function cannot be represented on a discrete mesh. Although there is no general
prescription for choosing the best test function, it is expected that a peaked function will overlap
with more states than a delocalized one. For the smallest QD’s, the entire eigenspectrum was
obtained employing a test function with the shape of a narrow Gaussian placed at r ≈ R/2.
For the largest QD’s, the entire eigenspectrum was obtained with a test function consisting of
two or three Gaussian peaks, distributed more or less evenly within 0 < r < R.

In order to obtain an l = 0 electron or hole energy spectrum, the test function was
propagated in time on the corresponding l = 0 effective radial potential (4b). In order to
obtain an l = 1 electron energy spectrum simultaneously with the n = 1, l = 0 → n′, l′ = 1
interband optical spectrum in a single calculation, the hole n = 1, l = 0 eigenfunction (E1
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Figure 3. l = 0 conduction band eigenenergies for a spherical GaAs-(Ga,Al)As QD with finite
confinement, as a function of the radius. (a) Without impurity. (b) With an on-centre shallow donor
impurity. �, , �,•,◦, ×, +, *, −, ♦, �, �, correspond to the ground, first excited, . . . , eleventh
excited-state, respectively. The dashed lines connecting the marks are an aid to the eye. The solid
line in part (a) represents the analytical ground-state eigenvalues.

test function) was propagated on the conduction-band l = 1 potential. The positions and
heights of the peaks revealed the l = 1 electron energy values and the relative intensities of
the corresponding n = 1, l = 0 → n′, l′ = 1 interband transitions, respectively.

Figure 1 displays the l = 0 conduction band radial potential of an R = 300 Å QD,
without (a) and with (b) the impurity, together with the entire set of eigenfunctions plotted at
the corresponding eigenenergies. Notice that the bottom of the conduction band was assigned
the value E = 0. Part (a) of this figure also illustrates the corresponding spectral function.
This figure was generated by means of a calculation deliberately performed with a relatively
low resolution, in order to illustrate the accuracy and efficiency of the method. Indeed, it can
be appreciated that the quality of the eigenfunctions obtained is very good, despite the low
resolution. It can be seen that the presence of the impurity lowers the energy of the states and
gives rise to a new one. Analogous calculations were performed successfully for the valence
band (not shown).
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Figure 4. l = 1 conduction band eigenenergies for a spherical GaAs-(Ga,Al)As QD with finite
confinement. (a) Without impurity. (b) With an on-centre shallow donor impurity. The convention
for the symbols is the same as in figure 3.

In figure 2, the l = 1 conduction band radial potential of the same QD is depicted,
without (a) and with (b) the impurity, with the entire set of eigenfunctions plotted at the
corresponding eigenenergies. Notice that, in both situations, the centrifugal term present in
the radial Hamiltonian (4b) raises the energies of the states in comparison with the l = 0 case
(figure 1). In fact, without the impurity, it is observed that there is one more state when l = 0
than when l = 1.

Figure 3 displays the l = 0 conduction-band energy eigenvalues without (a) and with (b)
the impurity, as functions of the radius of the structure. The marks correspond to the results
obtained in this work and the dashed lines connecting them are just an aid to the eye. The solid
line in part (a) of this figure represents the ground-state eigenvalues calculated by means of
the analytical transcendental equation. Clearly, our numerical results agree excellently with
the analytical ones. These plots exhibit the following general features: (i) the ground- and
excited-state eigenvalues decrease in an exponential-like fashion with the radius of the QD, the
decay being slower the higher the energy. Therefore, there is not a single radius for which bulk
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Figure 5. Photon energies of interband transitions in a GaAs-(Ga,Al)As QD with finite confinement,
as functions of the radius. (a) Without impurity. (b) With an on-centre shallow donor impurity.
�, , �, •, ◦, correspond to the valence band l = 0 ground-state → conduction band l = 1
ground, first excited, . . . fourth excited-state transition energies, respectively. The dashed lines
connecting the marks are an aid to the eye.

energy values are attained for different states. (ii) As expected, the number of states supported
by the QD increases with the radius. For example, the 35 Å QD supports only one state, while
the 75 Å QD supports two. (iii) The presence on the impurity may cause the appearance of new
states for a given radius. For example, the 100 Å QD exhibits two states without the impurity
and three states with the impurity.

Figure 4 is analogous to figure 3, except that now l = 1. The eigenenergies follow the
same general behaviour.

Figure 5 shows the calculated photon energies without (a) and with (b) the impurity, as
functions of the radius of the structure, for the interband optical spectrum corresponding to
the transitions from the l = 0 ground state of the valence band to all the l = 1 states of the
conduction band. It is observed that the photon energy for a given transition decreases in an
exponential-like fashion with the radius of the QD.
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Figure 6. Logarithms of the relative intensities corresponding to the interband transitions of
figure 5.

Figure 6 displays the logarithms of the relative strengths corresponding to the interband
transitions of figure 5, as given by the second factor of equation (6) and obtained from the test
function (28). The following two general features are illustrated by these plots. (i) For a given
radius, the intensities decrease very rapidly with the energy of the final state; (ii) the intensities
are largely independent of the radius of the QD. The latter result may be particularly useful
for the design of optical devices, since it guarantees that a higher-frequency transition can be
achieved by decreasing the size of the structure, without any loss in the transition intensity.

In figure 7, the binding energy of the impurity as a function of the radius of the structure
calculated by means of the RTWPM is compared with the values obtained by means of the
variational approach of reference [15]. It can be seen that the agreement between the two
methods is very good. However, our binding-energy results lie slightly higher, which means
that our calculated ground-state energies with the impurity present in the structure lie slightly
lower. According to the variational principle, this indicates that the RTWPM is more accurate
than the variational approach of [15], as it should.
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Figure 7. Binding energy of an on-centre shallow donor impurity in a spherical GaAs-(Ga,Al)As
QD with finite confinement, calculated by means of the real-time wavepacket propagation method
(•) and the variational method of reference [15] (◦).

6. Conclusions

We have pointed out a real-time wavepacket propagation methodology for the calculation of
discrete eigenenergies, eigenfunctions and optical transition strengths, within the effective
mass and single-hole-hand approximations of low-dimensional semiconductor systems. Such
methodology was applied to an extensive and systematic study, as a function of the radius, of
the entire l = 0 and l = 1 conduction band quantum states, and the n = 1, l = 0 → n′, l′ = 1
interband optical spectra of GaAs-(Ga,Al)As spherical quantum dots with finite confinement,
without and with an on-centre shallow donor impurity. The electron–hole interaction was not
considered.

The accuracy of the results was seen to be excellent, even for relatively short propagation
times. The variety of calculations performed illustrates the versatility and flexibility of the
methodology.

For simplicity, in this work the dielectric constant and effective masses were considered
equal for the GaAs and (Ga,Al)As materials. Also, the dielectric constant was taken as position-
independent and the effective masses as isotropic. These approximations can be easily relaxed
in this method, since the values of these variables can be specified at every point on the grid.

The extension of the formalism of the RTWPM to problems involving continuous spectra
is straightforward. However, the computational implementation requires special measures,
since it is now essential to properly simulate the continuum. An application of the RTWPM to
the calculation of Stark shifts, lineshapes, lifetimes and optical transition strengths in quantum
wells under strong electric fields will be presented elsewhere.

On the other hand, the extension of this methodology beyond the single-hole-band
approximation is a more difficult task, due to the need to deal with matrix Hamiltonians.
Research in this direction is currently underway.

We hope that the virtues of this methodology will render it attractive both for experi-
mentalists and theorists interested in the behaviour of the electronic and optical properties of
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semiconductor heterostructures as functions of the physical parameters involved in the system.
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